Antigenic sites of H1N1 influenza virus hemagglutinin revealed by natural isolates and inhibition assays.

نویسندگان

  • Jhang-Wei Huang
  • Wei-Fan Lin
  • Jinn-Moon Yang
چکیده

The antigenic sites of hemagglutinin (HA) are crucial for understanding antigenic drift and vaccine strain selection for influenza viruses. In 1982, 32 epitope residues (called laboratory epitope residues) were proposed for antigenic sites of H1N1 HA based on the monoclonal antibody-selected variants. Interestingly, these laboratory epitope residues only cover 28% (23/83) mutation positions for 9 H1N1 vaccine strain comparisons (from 1977 to 2009). Here, we propose the entropy and likelihood ratio to model amino acid diversity and antigenic variant score for inferring 41 H1N1 HA epitope residues (called natural epitope residues) with statistically significant scores according to 1572 HA sequences and 197 pairs of HA sequences with hemagglutination inhibition (HI) assays of natural isolates. By combining both natural and laboratory epitope residues, we identified 62 (11 overlapped) residues clustered into five antigenic sites (i.e., A-E) which are highly correlated to the antigenic sites of H3N2 HA. Our method recognizes sites A, B and C as critical sites for escaping from neutralizing antibodies in H1N1 virus. Experimental results show that the accuracies of our models are 81.2% and 82.2% using 41 and 62 epitope residues, respectively, for predicting antigenic variants on 197 paring HA sequences. In addition, our model can detect the emergence of epidemic strains and reflect the genetic diversity and antigenic variant between the vaccine and circulating strains. Finally, our model is theoretically consistent with the evolution rates of H3N2 and H1N1 viruses and is often consistent to WHO vaccine strain selections. We believe that our models and the inferred antigenic sites of HA are useful for understanding the antigenic drift and evolution of influenza A H1N1 virus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minor Changes in the Hemagglutinin of Influenza A(H1N1)2009 Virus Alter Its Antigenic Properties

BACKGROUND The influenza A(H1N1)2009 virus has been the dominant type of influenza A virus in Finland during the 2009-2010 and 2010-2011 epidemic seasons. We analyzed the antigenic characteristics of several influenza A(H1N1)2009 viruses isolated during the two influenza seasons by analyzing the amino acid sequences of the hemagglutinin (HA), modeling the amino acid changes in the HA structure ...

متن کامل

Designing of A Multi-epitope Recombinant Protein, Consisting of Several Conserved Epitopes from Hemagglutinin Protein of the H1N1 and H5N1 Strains of Influenza Virus by Immunoinformatics Approaches

Introduction: According to marked advances in bioinformatics studies, development of influenza vaccines has been greatly modified in many studies. In this study, we have designed a multi-epitope recombinant protein, consisting of several conserved epitopes from Hemagglutinin protein of the H1N1 and H5N1 strains of Influenza virus by immunoinformatics approaches. Materials and Methods: The regis...

متن کامل

Phylogenetic Comparison of Influenza Virus Isolates from Three Medical Centers in Tehran with the Vaccine Strains during 2008-2009

Background: Influenza virus is a major infectious pathogen of the respiratory system causing a high degree of morbidity and mortality annually. The worldwide vaccines are decided and produced annually by World Health Organization and licensed companies based on the samples collected from all over the world. The aim of this study was to determine phylogenecity and heterogenecity of the circulati...

متن کامل

Antigenic Variation of the Haemagglutinin Gene of the Influenza A (H1N1) pdm09 Virus Circulating in Shiraz, February-April 2013

Background: A new pandemic influenza A (H1N1) emerged in April 2009, causing considerable morbidity and mortality. Since mutations in the haemagglutinin (HA) may influence the antigenicity and pathogenicity of the virus, continued epidemiological and molecular characterization for the effective control of pandemic flu and developing of more appropriate vaccine is crucial. Objective: To monitor ...

متن کامل

Computational Identification of Antigenicity-Associated Sites in the Hemagglutinin Protein of A/H1N1 Seasonal Influenza Virus

The antigenic variability of influenza viruses has always made influenza vaccine development challenging. The punctuated nature of antigenic drift of influenza virus suggests that a relatively small number of genetic changes or combinations of genetic changes may drive changes in antigenic phenotype. The present study aimed to identify antigenicity-associated sites in the hemagglutinin protein ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Vaccine

دوره 30 44  شماره 

صفحات  -

تاریخ انتشار 2012